Appl Math Optim (2017) 75:229-251 @ CrossMark
DOI 10.1007/500245-016-9331-y

Optimal Harvesting in a Periodic Food Chain Model
with Size Structures in Predators

Feng-Qin Zhang! - Rong Liu? . Yuming Chen!3

Published online: 30 January 2016
© Springer Science+Business Media New York 2016

Abstract In this paper, we investigate a periodic food chain model with harvesting,
where the predators have size structures and are described by first-order partial dif-
ferential equations. First, we establish the existence of a unique non-negative solution
by using the Banach fixed point theorem. Then, we provide optimality conditions by
means of normal cone and adjoint system. Finally, we derive the existence of an opti-
mal strategy by means of Ekeland’s variational principle. Here the objective functional
represents the net economic benefit yielded from harvesting.
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1 Introduction

Populations consist of individuals with many structural differences, which include age,
(body) size, gender and genes. As a result, models with structures have been proposed
and analyzed. During the past one hundred years, age-structured models have played
significant role in the mathematical analysis and control of populations in biology and
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demography. To name a few, see [1-3,5,10,15,16,20,23,24,26] and the references
therein. For example, Fister and Lenhart [10] investigated optimal harvesting control
in a predator—prey model with age-structure in the prey.

For many populations especially in many ectothermic animal species, however,
size of an individual has a strong influence upon dynamical processes like its feeding,
growth and reproduction [25,27], which in turn affect the dynamics of the population as
awhole. Here by size we mean some indices displaying the physiological or statistical
characteristics of population individuals, such as mass, length, diameter, volume, and
maturity. For example, for plants, an individual’s size is important to capture light to
grow. As a result, it is more realistic and natural to assume that vital rates such as
mortality, fertility, and growth rates depend on size and time.

There have been many investigations on population models where the growth rate
depends on the size. See, for example, [4,6-9,11-14,17-19,21,22] and the references
therein. However, on the one hand, most of the studies only focus on a single species
without stages [4,11,14,17-19] or with stages [12,22]. Only a few deal with inter-
actions among species, particularly two-species predator—prey models [6,7,9,13,21].
Among them, Hallam and Henson [13] obtained the threshold on prey extinction,
which is a function of size-dependent predation. The stability of equilibria is studied
in [6,9]. Moreover, Bhattacharya and Martcheva [6] concluded that size-specific pre-
dation can destabilize a stable prey-only equilibrium. On the other hand, the literature
on control problems in size-structured population models is scarce and most of the
existing results are for single species. To the best of our knowledge, so far only Liu
and He [21] studied the optimal harvesting of a two-species predator—prey model with
size-structure in the prey. Moreover, natural populations are actually subject to sea-
sonal fluctuations which have to be taken into account when the harvesting strategy is
planned.

Motivated by the above discussion, in this paper, we consider a food chain of three
species in a periodic environment with size structures in the predators and harvesting
of all species. Here the top-level predator predates not only the low-level predator but
also the prey. One of such examples consists of mouse, snake, and eagle.

The remaining part of this paper is organized as follows. First, we propose the
model in Sect. 2. Then we study the existence of solution and continuous dependence
of solutions on model parameters in Sects. 3 and 4, respectively. The last three sections
are devoted to the optimal harvesting policy. Here the objective functional represents
the net economic benefit yielded from harvesting. The adjoint system of the state
system is derived in Sect. 5, followed by optimality conditions presented with a suitable
normal cone in Sect. 6. Then the existence of a unique optimal policy is proved via
Ekeland’s variational principle in Sect. 7.

2 The Model

As mentioned earlier, in this paper, we study a food chain consists of two predators and
one prey in a periodic environment. We assume that the top-level predator predates
not only the low-level predator but also the prey. Moreover, there are size structures
in and recruitments to the predators.
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For simplicity, we assume that the two predators have the same maximal size and
is [. Denote R4 = (0, 00) and Q = (0,/) x Ry. Let py(x,t) and p>(x, t) represent
the densities of the top-level predator and low-level predators of size x at time ¢,
respectively, while g () stands for the total number of the prey at time . The model
we consider is as follows,

I QDD — f (x, 1) — (. ) 1 — e (x, 1) p1, (x,1) €0,
0 4 3OBOP) — f (x, 1) — pa(x, 1) p2 — @1(PL(D) p2 — a2 (x, 1) pa,

(x,1) € Q,
0 — o1, q(1)g — P2(P1(1))g — 3(P2(1)g — o314, 1€ Ry,
v1<0 Hp10,1) = [f(Pa0) + falg@)] fo Bropi(x, 1) dx,  teRy,
V20, ) p2(0, 1) = f5(q(t)) fo B2(x) pa(x, 1) dx, t € Ry,
q(0) =go > 0,

2.1

where P;(t) = fé pi(x,t)dx is the total number of the predator i at time ¢, i =
1, 2. Here the vital signs Vi(x, 1), ni(x,t), and [f3(P2(¢)) + fa(q(t))]B1(x) are,
respectively, the growth rate, mortality, and fertility for the top-level predator; V; (x, t),
ua(x, 1), f5(q(t))B2(x) are, respectively, the growth rate, mortality, and fertility for
the low-level predator; fi(x,t) and f>(x,t) are respectively the recruitments of the
two predators; g (¢, g (¢)) is the intrinsic growth rate of the prey; ®;’s are the functional
responses, i = 1, 2, 3. Since the food chain is in a periodic environment, we assume
that

pitx,t) =pix,t+T), (x,1)eQ, i=12,
and
q(t)=qt+T), t € Ry,

where T € Ry is the period. The control variables o (x, t), a2 (x, t), a3(¢) are the
harvesting efforts for the three populations, which belong to

0<aj(x,1) <N;

ae. (x,1)e Q,i=1,2,
0<oa3(t) < N3 ’
ae.t € Ry

U= (1, a2, 03) € LF(Q)x € LT(Q) x LT (Ry)

where

L7 (Q)={h e L*(Q) :h(x,1) =h(x,t +T) ae. (x,t) € O},
LP(RL) = {h € L°(Ry) : h(r) = h(t + T) ae. 1 € Ry ).

ion of (2.1) corresponding to (¢, o2, o3)
ion problem,

Sl LN fy I—i.lbl 2 g
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max J(oy, o, a3), 2.2)
(ar,02,03)eld

where

2 T gl
J(ar, a0, 03) = Z/ / ; (x, D (x, ) pi(x, 1) dxds
i=1 70 J0

1 2 T rl )
_Egl:/o /0 cio (x, 1) dx dt
T 1 T
+/ w3(t)as(t)q () dr — 5/ c3a3 () dr.
0 0

Here the weight functions w1 (-, t), wa (-, t), and w3(¢) are respectively the economic
values of the individuals of the three populations and all are T -periodic in #; c1, c2,
and c3 are the costs for harvesting. Therefore, J (¢, o2, @3) represents the total net
economic benefit yielded from harvesting during a time period of 7.

We make the following assumptions throughout this paper.

(Al) Fori = 1and 2, V; : [0,]) x R — Ry are bounded continuous functions,
Vi(x,t) > 0and V;(x,t) = Vi(x,t + T) for (x,t) € Q, Vi(l,t) = 0 and
Vi(0,1) =1 fort € Ry, and there are constants Ly, such that

[Vi(x1,t) — Vi(x2, t)| < Ly, |x1 — x2| fort € Ry and x1, xp € [0, [].

(A2) There exist Bi € Ry suchthat 0 < Bi(s) < 5,- fors € (0,1),i =1, 2.
w1(x,t) = po(x) + m1(x, 1) ae. (x,t) € Q where ug € Llloc([O, D)
(A3) { with o(s) = 0 and [ o(s) ds = 0o, i € L¥(Q)
with f11(x,¢) >0 and (x,t) = 1 (x,t +T) ae. (x,t) € Q.
(A4) o :[0,1) x [0, T] — Ry is a measurable function and ps(x, 1) = pa(x,t +
T) > Oforall (x,?) € Q.
(AS5) pi(x,t) + Vix(x,t) > 0for (x,1) € Q,i =1,2.
(A6) There exists B > Osuchthat 0 < g(t,S) = g(t +T,S) < Bfor S,t > 0 and
g is Lipstchiz in the second variable, that is, there exists L > 0 such that

lg(t, S1) —g(t, $2)| = L|S1 — $2f  forallz, Sy, 82 = 0.

(A7) There exist constants B; and Cg, (i = 1, 2, 3) such that 0 < ®;(S) < B; for
S > 0and

|®i(S1) — @i($2)| = Co;|S1 — S2f  for §1, 52 = 0.

(A8) There exist constants C; and L; (i = 3, 4, 5) such that 0 < f;(S)
S > 0and

IA

C; for

1 — 87| for §1, S, > 0.
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(A9) f; € L®(Q)and fi(x,t) = fi(x,t+T) > 0for (x,7) € Qandi = 1, 2.

Definition 2.1 For i = 1, 2, the unique solution ¢; (¢; #y, x;0) of the initial-value
problem x’(¢) = V;(x, t) with x(z9) = x;jo is said to be a characteristic curve. Let
zi (t) = ¢;(t; 0, 0) be the characteristic curve through (0, 0) in the x-¢ plane.

Due to the periodicity of the state variables, p1 (x, t), p2(x, t) and g (¢), we consider
the case where > max{zl_l(l), zz_l(l)} 27

Definition 2.2 A three-tuple (pi(x,1?), pa(x,1),q(t)) € L%O(Q) X L%O(Q) X
L3 (Ry) of functions is a solution of (2.1) if it satisfies

pix, 1) = p1(0,1 —z; ') (x5 x, 1)
Y fi(r s, x)) T(x; x, 1)

- 2.3)
0o Vilr,ey (rit,x) Hi(r;x, 1)
pa(x, 1) = p2(0,1 — 25 ' (X)) a(x; x, 1)
X =l .
+/ fz(r,gol_l(r,t,x)) Ih(x; x, 1) o 04
0 Va(r,@; (r;t,x)) a(r; x, 1)

t
q(t) = qoexp [/O [g(0,¢q(0)) = P2(P1(0)) — P3(P2(0)) — a3(0)]d0] ,
(2.5)

where

Iy (s; x, 1)
/s wi(r oy s tox0)) Far (o it ) + Vie(r o L1, x)
=exp|— — dry,
0 Vir, @1 " (r; 1, x))

Mo (s; x, 1)
[ / wa(r, @3 (3 1, 3)) + @1 (P (1) + aa(r, @5 (5 £, %)) + Vo (r, 05 (5 £, X)) }
=expy— drt.
0

Va(r, @5 ' (r; 1, %))

3 Well-Posedness of the State System

This section is devoted to the well-posedness of (2.1).
Let

M { G0 CSBT 1 F2 )11 e T + 120, )iy ]

(C34+ COBITN G Lo TP + 1 AC Lo

Denote X = L>®(R,, L'(0,1)) x L®(R,, L'(0,1)) x L*®(R,). The solution space
is defined as follows.

0<qg(t) <Mae.teR pi(x,1)>0ae.
d fépi(X,l)dXSM,i=1,2 ’
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We define G : ¥ — X by

(G(p1, p2, ) = (G1(p1, p2, 9), Ga(p1, P2, 9), G3(p1, P2, q)),

where G1(p1, p2, q), G2(p1, p2, q), and G(p1, p2, q) are defined respectively by the
right hand sides of (2.3)—(2.5). Obviously, if (p1(x, t), pa(x, 1), g(¢)) is a fixed point
of the map G then it is a solution of (2.1) and vice versa.

Theorem 3.1 For a given (a1, @z, a3) € U, system (2.1) has a unique non-negative
solution (p1, p2. q).

Proof 1t suffices to show that G is a contraction mapping on X'.

First we show that G maps X into itself.

By assumption (A1), we have V(0, ) = 1 and V»(0, 1) = 1. Let b; (t) = p; (0, t).
Then, noting (pi_l(O; t,x)=1t— zi_l(x) (i =1,2), we have

bi(1)
=V10,)p1(0,1)

!
=[f3(P2(1) + f4(q(t))]/0 B1(x)p1(x, t)dx

1 x —1,..
<[Cs +Ca] /0 B1(x) [m(o, o O s+ [ L0 t’x))drdx}

0 Vil ey '(rit,x)

1
< [C3+ C4] [ /0 B1(x)b1(p; (05 7, x))dx

l X 1.
+/ B1(x) Nl q)l_l(r’t’x))drdx]
0 o Vilr,e (r;t,x))

[
= [C3 + C4] [ /0 Br(x)bi (t — z7 ' (x))dx

l t
4 / A1) / 1 fm(a;r,x),a)dadx]
0 ¢ (0:1,x)
_ 1
< [Cs + C4l) /O bi(r — 27 (x))dx
l t
+[C3+C4],3_1/0/0fl(wl(d;t,x),a)dffdx

t
< [C3 + Culf /O b1(@)do +1Cs + CalBIl fiC L1 o)

(Here we have used the transformation o = ¢ ! (r; t, x) to obtain the last equality.
By Definition 2.1, 0 = t when r = x while 0 = (pl_l(O; t, x) when r = 0. Moreover,
LN do = Vi(pi(o;1,x),0)do =




Appl Math Optim (2017) 75:229-251 235

Vi(r, gol_l (r; t, x))do. The same transformation and a similar one s = ¢ (r; ¢, x) will
be used in the coming discussion.) Similarly, we have

t
ba(t) < Cso /0 ba(0)do + CsAall 6. Mg,

Due to the periodicity of by (¢) and b>(t), we consider the case where ¢ € [£,f+ T
only. It follows from Bellman’s lemma that

bi(t) < [C3 + C4)B1ll f1 (s .)||L1(Q)8[C3+C4];3_1T

and
ba(t) < CsPall foC, )l 10y T .

Now, we consider G(p1, p2, q) = (G1(p1, p2, q9), G2(p1, p2, q), G3(p1, p2, q)).
We can see that

I
/0 |G1(p1, p2, @l(x, t)dx

1
S/ P10, 91 (03 £, x) T (x; x, 1)dx
0

I rx =1,
’ 7ta n 5 ,t
+/ Ji(r <P1_1(r X)) My (x; x )drdx
0 Jo Vi(r @y (r;t,x)) Ihi(rsx, 1)

l I rx =1
b 7t7
5/ p1(0, <p1_1(0;t,x))dx+/ S <p1_1(r D rd
0 0 Jo Vi(rep (rit,x))

1 [ t
- / bi(t — 27 (1)dx + / / Filg1(0: 1, %), 0)dordy
0 0 Jor ' (O:r.x)

1 ! t
< / bu(r — 27 (x))dx + / / Filgr(o: 1, %), 0)dodx
0 0 JO

t
S/O bi(o)do + [ f1C. )z
<[C3+ CABTIAC e TP 1L AC )0

Similarly,

1 _
/0 1G2(p1. p2. I, )dx < CsPT || 2. )10y P + 126, Lo

and
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It follows that G is a mapping from X to X'
Next, we discuss the compressibility of the mapping G.
By (2.3), we can get
1
/0|Gl(p1,pz,q>—Gl(p’l,pé,q’)ux,r)dx
= /01 | p1(0, 7 ' (0; £, X))y (x; x, 1) — pi (0, 97 ' (05 £, X))y (x; x, 1) | dx
< /0 l P10, 7 ' (0: 2, x)) = p(0. ¢y '(0: £, x))|dx
= /0 l b1t — 2y (x)) = by (t — 27 ' (x))|dx
< /Ot 1b1(0) — b ()|do
= /0 LPa0) + filg (o] /0 l B1(x)pi(x, 0)dx
—[f3(P3(0)) + fa(q'(@))] /0 l B1(x)p| (x, 0)dx|do
< Bi1(C3 + Cy) /0 /Ol Ip1(x,0) = pj(x,0)ldxdo
+B1(Ls + Ly) /O t [IP2(0) = Py(@)] + |(q(0)) — q'(0)]] /0 l Pi(x, 0)dxdo
< fills+ L4>M/Ot [/Ol P2, @) — ph(x, o)ldx + [(g(@) — q’(a>|} do
+1(Cs + Ca) /O /Ol |p1(x, @) — p)(x. 0)ldxdo
< M, /0 [|<q<o)> —q )+ /Ol Ip1(x, ) = pi(x, 0)|dx
+ /01 |p2(x,0) — ph(x, o)Idx] do,

where M| = max{B1(C3z + C4), B1(L3 + Ly)M}.
By (2.4), we obtain

G2(p1, p2, @) (x, 1) = p2(0, 95 ' (0 1, x) 2 (x; x, 1)
Y o (r, @5 (s 1, x)) Ta(x; x, 1)
r, (pz_l(r; t,x)) Ma(r; x, 1)
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With the integral transform s = ¢, 1 (r; t, x), the above equality can be turned into

G2(p1, 2, @) (x, 1) = ba(gy (0 1, X)) E(9y ' (0; 1, x); x, 1, Py (1))

t
+/ Flea(s; t,x), $)E(s; x, t, Pr(t))ds,
()
where
t
E(@r;x,t, Pi(t)) = exp [—/ m2(@a(s; t,x),8) + O1(P1(1))
r
+ax(@a(s;t,x),8) + Vax(g2(s; 1, X), s)dS] .
Let

My =Co, T(M + 11 £, )iy
M3 = max {LspoM + MyMy, MaMy, Cspy + Mo My} .

Then we have
!
/0 |G2(p1, P2, @) — G2(pl, phy ¢)(x, )dx
[
= / b2 (5 1 (0; 1, X)) E (93 (03 1, x); x, 1, P1(1))
0

t
+ / falpa(s; t,x), )E(s; x, t, P1(1))ds
0y ' (031,x)
— b5 (5 (03 1, X)) E (95 (05 1, ) x, 1, P{(1))

t
+/ Falpa(ss 1, x), s)E(s; x, t, P{(t))ds|dx
%

> (051,%)
t

[
< / Vhigy Ot [ |@1(PI0) — @1 (P{(0)ldsd
0 ¢, (0:1,x)
1
+ /0 b2 (95 1 (0; 1, x)) — bh(9; ' (0; 1, x))|dx
1 t t
[ pesios [ o) - oo
0 Jo, (0;1,x) s
t 1
5/0 |b2<a>—b§(a>|da+cq>1MT/O p1(x. 1) — pl(x. D)ldx
[
£ Gy Canl T /0 Ip1(x. ) — P e, 1)ldx

Y

)
~ f5(d'©) /0 B2(x) Py (x. 0)dx|do

@ Springer
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HICo T + 11 ¢ [ b1 — bl Dl

< /0 t [Ifs(q(o))—fs(q’(a))l /0 l ﬁz(S)pz(x,ff)dX} do
+ [ 15 @) /  Br@Ipa(r.0) — ph(x.o)ldxdo
[Co, T + 1 (1)) /0 P — B nldx

< LspoM /0 t lg(0) = ¢'(0)ldo + Cspa /O t /0 l |p2(x, @) — py(x, 0)|dxdo
MMy /Ot [|<q<o)) @) +/Ol P13, @) — P (x, 0)dx
+ /Ol |p2(x,0) — pé(x,c)ldx] do

= (LspoM + MaMy) /O l 1(q(0)) = ¢(0)|do
+ Mo M, /Ot /Ol Ip1(x,0) — p’l(x,a)|dxdo
+(Csp2 + Mle)/Ot /Ol |p2(x, 0) — ph(x,0)|dxdo

< My /Ot [|(q<o>) —d @)+ /01 113, @) — P (x, 0)dx
+ /Ol |p2(x, 0) — p(x, G)IdX] do,

By (2.5), we have

|G3(p1. p2.q9) — G3(p}, ph, ¢)I(t)

t
= qo| exp {/0 8(0,4(0)) — P2(P1(0)) — P3(P2(0)) — a3(0)d0]

t
— exp [/0 8(0,4'(0)) — ®2(P{(0)) — P3(P5(0)) — 0t3(0)dx0]

_ t
< goe*TB /0 [lg(o, q(0)) — g(o, ¢/ ()| + |D2(P1 () — D2(P{(0))]

+[@3(P2(0)) — P3(Py(0)1do

_ t [
< qoe’T8 /0 [Lig(o) — 4’ (@) + Ca, /O |p1(x,0) — pj(x,o)|dx
[
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t 1
§M4/0 [I(q(cf))—q’(cf)IJr/0 Ip1(x,0) — pi(x,0)|dx

I
+/ |p2(x,0) —pé(x,a)ldx] do,
0

where M4 = qoezTB max{L, Co,, Co,}.

Now we use the Banach fixed point theorem to demonstrate that the mapping G has
only one fixed point. Due to the periodicity of the elements in the set X', we consider
the case t € [7, 7 + T] only. Define a new norm by

l [
l(p1, P2, @)« = Ess  sup [e_“[lq(t)l+/ Ipl(x,t)ldx+/ Ipz(x,t)ldx]}
telt,t+T] 0 0

for any (p1, p2,q) € X and some A > 0, which is equivalent to the usual norm. Then
we have

IG(p1. p2.9) — G(P, Ph. 4 lx
= [[(Gi(p1, p2,q) — G1(p}, Ph. 4", Ga(p1, p2. q) — G2(p], Ph. 4)),
G3(p1. p2.9) — G3(p, Py, )«

= Ess  sup Ie_“ [|G3(p1,Pz,q)—Ga(Pi,pé,q/)I
telt,i+T]

[
+/0 |G1(p1, p2,q) — G1(p}, ph, q))ldx
1
+/0 IGz(p1,pz,q)—Gz(p’l,pé,q’)ldxn

t
< (M) + M3+ My)Ess  sup [6’_“ [/ (1(g(@)) = ¢'(o)]
telf,i+T] 0

1 1
4 /O p1(x, o) — Pl (x. 0)ldx + /0 Ip2(x, o) —pa(x,a>|dx>da]]

= MsEss sup [e‘“/ e |:e_m(|(fll(0))—42(0)|
0

telf,i+T]

1 1
+/O |P1(x,0)—Pi(x,0)|dx+/0 |P2(x,0)—P§(x,6)|dx)}d0]
Ms
= =l = P2 —Ph g — )l

Choose A such that A > Ms. Then G becomes a contraction on the space of (X, || - |«).
By the Banach fixed point theorem, G owns a unique fixed point, which is the solution

@ Springer
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4 The Continuous Dependence of Solutions

In this section, we will discuss the continuous dependence of solutions on the control
variable.

Theorem 4.1 For any (a1, az, @3), (o), ), &) € U, let (p1, p2, q) and (p, p5.q")

be solutions of (2.1) corresponding to (a1, az, a3) and (], &), &}), respectively. Then
there exist positive constants M4 and M5 such that

Ip1 — P L. 7:010.0) + lP2 — P/2||Loo(0,T;L1(0,z)) +llg = q'llL=.7)
< M T (lay — il oo, 01 0.y + 12 — @5l oo, 7: 21 0.0y T3 — &5l 0, 7))

and

1 = Pilleicopy + P2 = Palleiop + g =4 lno,r
< MysT (llay — & lipicop + llea — @5l + lles — SliLio.r)) -
Proof We only prove the first estimate as the proof for the second one is similar. Since

(1. p2,q) and (p}, p5, q') are solutions of (2.1) corresponding to (e, &2, @3) and
(o}, o), %), respectively, we have

lg() —q' )]

t
= 610‘ exp [/0 8(0,q(0)) — P2(P1(0)) — P3(P2(0)) — a3(0)d0]
t
— exp [/o 8(0,4'(0)) — ®2(P{(0)) — P3(P5(0)) —aé(a)dG] ‘

- t
< 0| /0 [— 8(0,4(0)) = P2(P1(0)) = 3(P2(x, ) — 3(0)

+8(0,4'(0)) + P2(P{(0)) + P3(P3(0)) + &5(0)] da‘

- t i 1
= qoe"?| /0 [—g(o,q(o» ~ @ ( /0 n. o)dx) - @3 ( /0 pz(x,a)dx) — a3(0)

! !
+g(0. ¢/ (0)) + > (/ Py (x, a)dx) + &3 (/ ph(x, o)dx) + oté(a):| da‘
0 0

_ t
< o /O [|g(a,q(a>) ~ 4(0.4'(@))]

! !
+ ‘CDZ (/0 p1(x, a)dx) — d) (/0 p’l(x, a)dx) ‘
! !
+|s (/0 P, o)dx) — @3 (/0 P, a)dx) | +laso) - ag(a)\] do

_ t
< 90" L, /0 4(0) — ¢'()ldo
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_ t 1
+ Co,yq0e’ 8 /0 /0 |p2(x,0) — ph(x, 0)|dxdo

— t
+qoe’"® /O laz (o) — & (0)]do,

1
/0 |p1(x, 1) = py(x, 0)ldx

Y il (s 1, x)) T (x; x, D,
0 Vil e (rir,x)) Th(rit, x)
Y fi(r o (s, x) LGOI
0 Vi(r e (rit,x) T(rix, 1)

!
= [ i osemmiix i +

— Doy (0: £, )T (s x, 1) —
< /Ol |b1(t — 27" () = by (t — 27 (x))|dx

+(C3 + Co)MP /Ol /Ot lar(p1(ost, x),0) — a’1(<p1 (o;t,x),0)|dodx

+ /Ol /O fi(@(s; 1,3, 5) / Q19103 1, ), 0) — & (9103 1, ), @) |dodsdx
< Mo /0 19(@) — g/ @)ldo + My /0 /01 Ip1(x, @) — P} (x, 0)ldvdo

+ Mg /Ot /Ol |pa(x,0) — p’z(x,a)dxdo

+ Mo /0 /Ol |1 (@1 (03 1, x), 0) — &} (¢2(0 1, x), 0)|dodx,

1
/0 |pa(x, 1) — ph(x, 1) dx
¥ fr ey (r 1, x)) Ta(x; x, 1)
o Va(r, w{l(r; t,x)) Ma(r; x, 1)

Y ey N, x) (s x, 1)
0 Va(r, @y ' (rit,x)) Th(rix, 1)

l
=/0 b2ty 0: 1 ) o 2. 1) +

r|dx

— Dy (5 (03 1, x)TTh (x; x, 1) —

1
< [ 103 100 = B0 01,3 x

1 x Lt o “lp g
+/ B (051 (0; t,x))/ loa(r, ¢y (15 ,x))_1 ay(r, ¢y (r; ,x))ldrdx
0 0 Va(r, ¢, " (rit, x))

N / |d>1(P1<z))T<1>1(P{<r)>| e+ /l ¥ falr, (61(“ 1, x))
0 Valr gy '(ri1.x) 0 Jo Va(rogy'(rit,x))

y / oz (0, 95 (011, %)) — ay(a, @5 (03 1, X))
r Va(o, 93 (31, %))

N / |1 (P (1) — ®1(P{(1))]

do dr dx

do dr dx

Va(o, 95 (o3 1, X))

!
/ |pi(x,0) — pi(x,0)|dx do
0
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t 1
+M12/ / [p2(x,0) — p5(x,0)|dx do
0 Jo
t pl
+M13/ / laz(@2(05 1, x),0) — a5 (pa(0; 8, x), 0)| do dx.
0 JoO

Here
I} (s; x, 1)

—exp _/ wi ey i, 2)) + e (roor (s 1, %)) + Vie(r p s 1, x))
0 Vi(r, o7 (5 1, %)) ’

H/z(s;x,t)
—exp _/ pa(r, @y (i1, x)) + @1 (P (t))+062(r 23 Yt x)) + Va(r, 2 Yrs e, X))
Valr, @3 ' (ri 1, x))

Now the result follows immediately from the above analysis. O

5 The Adjoint System

In this section, we will derive the adjoint system of (2.1), which is necessary for
optimality and the existence of a unique optimal policy.

Lemma 5.1 Let (p}, p3. q*) be the solution of (2.1) corresponding to (a}, a5, &) €
U. Foreach (v, vz, v3) € Ty (o}, oF, af) suchthat (af +evy, a3 +eva, a+ev3) e U
for sufficiently small ¢ > 0, we have

1 1 1
E[PT_PT]%Zl, ;[PE_P;]—>22, ;[qs—q*]—>zs

as e — 0, where (p{, p5, q°) is the solution of (2.1) corresponding to (a} +¢&vy, o5 +
gV, (x;" + ev3) and (21, 22, 23) is the solution of the following system

ey LD — [y (x, 1) + e (x, D]z (x, 1) — o1 (x, ) pl(x, 1),
312 + M —[pa(x, 1) + 1P} (1) + a5 (x, Dza(x, 1)
—[v2(x, 1) + B (P () Z1 ()] p3(x, 1),
L — [ (PF(1))Z1(t) + Py(PF (1) Za(1) + v3(1)]g* (1)
+Ig(t, g* (1)) + q* (1) LW aiteg’n) ) — o (1) — Da(PY (1) — D3(PF(1)]za(0),
2100, 1) = [f3(P3 (1) + fa(q* (r))] o B0z (x, 1) dx
+LEPO)1Z20) + fi(g* )230)) Jn Arepy(x. ) dy

2200.1) = f5(g* () fy Ba)z2(x. 1) dx + fLg*(0)z3(2) [y Ba(x) py(x. 1) dx,
(5.1)

where
21, ) =21, t+T), 2, t)=z2x,t+T), z30)=z3+T),
Zi() = fyzix.ndx,  Zo() = [y z2(x, 1) dx,
Pi(t) = [i p3(x, 1) dx.
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Proof The existence and uniqueness of solution to (5.1) can be established by a similar
way as that in the proof of Theorem 3.1. According to Lemma 3.1.3 in [23], lin%) p";—p"
£—>

(i =1,2)and Slg% qé:q* make sense. Since (p], p3, ¢*) and (p}, p5, ¢°) are solutions

of (2.1) corresponding to (], @3, @3) and (a] +evy, a3 +ev2, a3 +ev3), respectively,
it follows that %[pf - pils %[pg — p3l,and %[qg — ¢*] must be solutions of

[ 9 1,6 % 9 lV £ %
(i(”a‘t ) (i WPLZPD) — (g 4 @)L (pf — pD)] = v pf,
(L (pE—px (L (pE—px
(S(Pgt Pz)) + (S(PBZX 172)) — _(HZ +Ol>2k)[%(p§ _ p;)] _ Uzpi
1 — a1 (Pf (1) ps — @1(PF (1) p3],
d(L (gt —ag*
@D — gt g (1)q" (1) — g(t, ¢*())q* ()] — XL (g* — g™)]
—v3q° — H[®2(PE(1))gF (1) — D2(P}(1)g*(1)] 5.2)

— 2 ®3(P5 (1)g° (1) — D3(P5 (1))g* (1)),
Lpt = p)0.0 = LLAPE0) + falq® ()] [y B pf(x. 1) dx
—LAPFO) + fal@* )] fy B p*(x. 1) dx,
Lp§ = p9(0.0) = L f5q° ) [y Pa(x) p5(x. 1) dx
—f5(q* @) Jy B2(x) p5(x, 1) dx],

where

1 e * 1 & * .

E(p" -pHx,t) = E(p" -pHx,t+T) (i=12),
1 1
-@°—q"HW) = —-(q° =g +T),
& I
1 I
—(Pf — P*)(1) =/ -(p; —pHx,ndx (i =1,2),
I o €

1
PX(1) :/ pitx,ndx (i=12).
0

O
It follows from Theorem 4.1 that
%[g(t, q*(0)q° (1) — g(t. " (1))q" ()]
= é[g(t, q° () — g(t, g (t)1g" (1) + g(t, q*(t))é[qs —q"]
— gt q"(1))z3(1) + q*(t)mzaa) (5.3)

dq

as ¢ — 0. Similarly, we have
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= O (P{(1)z2(x, 1) + @y (P (1) Z1 (1) p3 (x, 1), (5.4)
é[%(Pf(t))qg(t) — ©2(P{(1))g"(1)]

— ©a(P{(1)z3(t) + PH(PI (D)) Z1(g™ (1), (5.5)
é[%(Pf 1)g" (1) — @3(P5(1))g"(1)]

— ©3(P3(1)z3(t) + P5(P5 (1)) Z2()g™ (1), (5.6)

1 1 1
z |:f3(Pf(t))/0 ﬂl(s)pf(x,t)dx—f3(P2*(t))/0 ﬁ](x)p’f(x,t)dx]

l l
— AP0 /0 B2, 1) dx + FL(PEO) Za(0) /0 B Pt (x, 1) d,
5.7

1 l l
X [f4<q8<t>> /0 B1(x) Pt (x. 1) dx — falq* (1) /0 B pECr. 1) dx}
l l
— fi@ ) /0 BeziCr 1) dx + £l 1) 25(0) /0 L) PECx, 1) dx, (5.8)
1 l l
. [fs(qg(t)) /0 B pix, ) dx — f3(q* (1)) /0 Br(x)pi(x. 1) dx]

! !
- fs(q*(t))/O ﬂz(X)zz(x,t)dx+f§(q*(t))13(t)/0 Ba(s)p5(x, 1) dx (5.9)

as ¢ — 0. Taking ¢ — 01in (5.2) and using (5.3)—(5.9) yield the required result.
Next we consider the following adjoint system of (2.1),

[ 2+ Vi, D0 = [y (x, 1) + of (L D1E + o1 (x, D (x, 1)
+1(g* (P (PFE)) + O (PFD)) [3 phlx, DE(x, 1) dx,
—£100, DAL (PF1) + falg*(1))]
% 4 Vo(x, 032 = [pa(x, 1) + ad (x, 1) + D1(P*(1)]e2 + @ (x, Dk (x, 1)
F (g (DL (PF(1)) — £2(0, 1) B2(x) f5(q* (1)),
— F{(PF@)EO, 1) [ B1(x) pl(x, 1) dx,
= —[g(t, ¢* (1) + q* () B — @y (P (1)) — D3(P3 (1)) — ()]
+o3(Dai() — 100, 1) f1(g* (1)) [y B1(x)pF(x, ) dx
— 50,0 fL(q*®) Jo B2(x) p3(x, 1) dx,

(5.10)

where

§i(x,r) =&(x,t+T) (@(=12),
@) =nt+7),

§(,)=0 (@(=12),

ydx (G =1,2).
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Treating (5.10) in the same manner as that in Theorem 4.1, we can get the following
result.

Theorem 5.2 For each (a1, s, ®3) € U, the adjoint system (5.10) has a unique
bounded solution (&1, &, n). Moreover, there exists a positive constant B such that

€1 — &lllLcor + &2 — &llzcor + Im = n'llLe©,1)
< BT (lla1 — &} lLocop) + (loa — a5 |l Lo(op) + llaz — a5l ,7))s

where (€1, &, 1) and (&1, &), 1)") are solutions of the adjoint system (5.10) correspond-
ing to (a1, a2, a3) and (), oy, o}), respectively.

6 Optimality Conditions

Theorem 6.1 Let (p}, p5, q*) be the solution of (2.1) corresponding to the optimal
policy (af, a3, a3). Then

a’f(x,t) Zfl [a)l(-xﬁt)+§i‘(xat)]p1(x7t):|’ (61)
L 1
o (x, 1) =F [ene, D)+ éi(x, Dlp3(x, t):| ) (6.2)
L 2
i) = 7 | L2 F n(t)]q*(t)]’ 63)
L c3
where the truncated mappings F; are given by
0, h(x,t) <0,
(Fih)(x,t) = { h(x,t), 0 <h(s,t) <Ny, (6.4)
Ny, h(x,t) > Ny,
0, h(x,t) <0,
(Fah)(x,t) = { h(x, 1), 0 =<h(x,1) <Na, (6.5)
Ny, h(x,t) > N2,
0, h(t) <0,
(F3h)(t) = { h(1), 0 =<h() = N3, (6.6)

N3,  h(t) > N3,

where (§1(s, 1), &2(x, t), n(t)) is the solution of the adjoint system (5.10).
Proof For any element of the tangent cone (vi, vz, v3) € Ty (oz1 , az, oc3) we have

(oz1 + 8v1 oe2 + evp, 03 + 8v3) € u for sufﬁ01ently small & > 0. Let (p{, p5.q°%)
I +evy,af + e, oz3 + ev3). From the
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2 T .l 2 1 T /!
Z/ / a)i[a;‘—i-evi]pfdxdt—Z—/ / c,-[oti*—i—evi]zdxdt
i=1 0 0 i:l2 0 0
T T
* & 1 * 2
+ w3laz + ev3lg® df — > c3laz + ev3]”dr
0 0
2T gl L )
SZ/O /Oa),-oe;kp;-“dxdt—zi/o /Oci[ot;-“] dx dt
i=1 i=1
T 1 T
+/ a)3oz§kq*dt——/ 03[a§‘]2dt.
0 2 Jo

Consequently,

2 ol pt — pr 1
0> Z/O /0 (a)ia;“% —I—wivipf — Cia;kvi — Eeciviz) dx dr
i=1

T qa _ q* 1
+/ (w3a_§: + w3v3¢° — c305v3 — Escw%) dr.
0 &

By Lemma 5.1, as ¢ — 07, we have

2 T sl 2 T ol
0> Z/ / (wiafzi)(x, 1) dx dt —i—Z/ / [(wi p] — cia})vil(x, 1) dx dt
= Jo Jo = Jo Jo
T T
+/0 (w3e32)(1) dt +/0 [(@w3¢™ — c3a3v3](r) dr.

Multiplying (5.1) by &1 (s, 1), &2(x, t), and n(¢) and then integrating on Q7 and [0, T']
and using (5.10), we obtain

2T gl T
E / / (wiorfzi)(x, 1) dx dt +/ (w30323)(1) dt
i=1 70 JO 0

2 T T
=5 / / & pro)(x 0 drdr + / (nq*v3) (1) dr.
i=170 J0 0

Then

2T gl
0=>" {loi (x, 1) + & O, D1pF (e, 1) — e (x, D}vi (x, 1) dx dr
P 0 0 i i

T

o3 () }uz (1) de
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for each (vi, v2,v3) € Ty(af, of, af). Thus ([(w1 + &) p} — crafl(s, 1), [(w2 +
£)ps — c231(x, 1), [(w3 + ng* — c331(1)) € Ny (a7, o, of), which implies the
conclusion of this theorem. O

7 Existence of a Unique Optimal Policy
To apply the Ekeland’s variational principle, we need the following mapping,

= J(ar, a2, a3), (a1, a2, 3) €U,
T, a2, 03) = [ —00 otherwise

Lemma 7.1 The functional J (01, a2, @3) is upper semi-continuous.

Proof Suppose that (af, o5, af) — (a1, a2, @3) as n — +-o0. Without loss of gen-

erality, we assume that (af, &, o5) € U for all n. Let (p1,, pan. qn) and (p1, p2, q)

be solutions of (2.1) corresponding to (af, @y, @5) and (a1, a2, @3), respectively.
By Theorem 4.1, we know that, for any # € (0, T'),

pln(" t) g pl(" t)7 P2n(‘, t) g PZ(" t)9 ‘]n(l) g ‘](t)

as n — —oo. By the Riesz theorem, there exists a subsequence (still denoted by
(o}, oy, a3)) such that, for any (s, 1) € Or, (x,t) € Qr,and ¢ € [0, T,

aj (s, 1) = a1(s, 1),  af(x, 1) = ax(x, 1), a5(t) — asz(t), a1
pin(s, 1) = pi(s, 1), pa(x,t) = pa(x,1),  gu(t) = q(1), ’

@ (s, 1) = (a1(s, )%, (@ (x, 1)) = (@a(x, 1)), (@5(1)* — (a3(1)?
(7.2)
asn — +o00. By (7.1), it’s easy for us to get

C()l(s, t)a;l(s’ t)pln(sv t) - a)l(sv t)al(sv t)pl(s’ t)7
w(x, )y (x, ) pan(x, 1) = w2(x, Haz(x, 1) pa(x, 1),
w3 (t)as (1)qn (1) = w3(D)az(t)q(1)

as n — +o00. From (7.2), using the Lebesgue’s dominated convergence theorem, we
obtain

T rl T rl
lim / (@ (x, 1) dx dr = / / (a1(x, 1)) dx dt,
0 0 0 0

n——+o0o

T 1 T [
lim / /(ag(x,t))zdxdtz/ /(az(x,t))zdxdt,
n——+00 0 0 0 0
T

T
=/<wmﬂa
0
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It follows from Fatou’s lemma that

lim sup  J(},ad,af) < (a1, a2, @3),
n=>+00 (o ol o) eld

which shows that J (or1, @2, @3) is upper semi-continuous. O

Theorem 7.2 If BlT(% + é + %) < 1, then the control problem (2.1)—(2.2) has a
unique solution (af, o3, ) € U and has the form of (6.1)—(6.6).

Proof By Lemma 7.1 and Ekeland’s variational principle, we claim that, for each

e > 0, there exists (af, a3, @5) € U such that

J(@f a5, a5) > sup  J(ap, a2, a3) —e,
(o1 00,3)€U

f(af, o5, a3) > sup
(a1, 00,03)eld

{ J(@1, a2, 03) = Vellat —ailliig;) ]
—JVelas — llrion — Velle§ — a3llz10,7)

Thus the perturbed functional

Jelo, o, 3) = J (a1, a2, 03) — Vel —aillpiop

—«/5”055 —llpiop — «/Ellai —azllio,r)

attains its supremum at (ef, 3, ). Similar arguments as in those in the proof of
Theorem 6.1 will produce

W5, 1) = Fi [[w1(s, 1) -I-Sil(s, Hlpi(s, 1) N \/Egél(s, t)] ’
W) = F [wa(x, 1) + Six, D1p5(x, 1) N ﬁeiix’ t)} |
o) = 7 | LW ET OO ﬁes(t)} |
L c3 Cc3

where 6; € L*(Q7),02 € L®(Qr),03 € L*(0,T), and |0 (s, )| < 1, |02(x,1)| <
L1630 < 1.

We first prove the uniqueness by using the contraction mapping principle. Define
the mapping C : U — U by

Clay, a0, 03) = F ((“’1 + 51)1’1’ (w2 + 52)172’ (w3 + r})q)
1 2 Cc3

_ (}-1 [(wl +’§1)p1} 5 [(w2+§2)p} A [(ws JHMD’

c c3

C1

ively, solutions of the state system and the
variable (a1, ap, a3). From Theorems 4.1
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and 5.2, we know that (p1, p2, q) and (&1, &1, ) are continuous with respect to the
control variable (a1, a2, @3). So we have

IIC(Otl, o, a3) — Clay, a, ab)||

[w; +£l]pl [w; +S ]p,
A=A () e,

+ Hfs (@) A )

22: (@i +&)pi (@i +E)p;
im1

Cj Ci
1 1 1 , , ,
<BT o —+ o + — . (ller = fllzoo(op) + lloz — @Sl + llez — e5llL=o,1) »

IA

N H (@3+mq  (3+1)q
e

L(Qr) L2°(0,T)

where Bj is a positive constant. Since BIT(é + é + Ci) < 1, the mapping C is a
contraction and owns a unique fixed point (a1, @2, @3) € U. Then Theorem 6.1 implies
that any optimal control (e}, o3, %) if exists must be a fixed point of the mapping C.
Hence the uniqueness of optimal policies holds.

Next, we show that the control (a1, &3, @3) is the optimal control. Since

IC(erf, a5, @) — (], a5, &5) oo

_ H ( [(wl +El)p1} 5 [(wz+$§)p§} A [(wz +n"’")qED
c2 Cc3

B (fl[[wl-l-éllpi?+«/591]’]_.2[[w2+§2€]17§+\/§92:|’

(41 2 2
F [[ws + n°lq® x/_93D H
c3
-l ([P Al L)
+|7 [%] _A [[w3 t:g]q «/'03] H

Ci

2
(w; +€ )pl (i +E)p]  eb;
ZH - ~ ¥ s

N ” (@3+n)q°  (w3+1n°)q° /et H
Cc3 c3 oo

1 1 1
= C—l«/E|I91(5, Dlloo + a«/EH@z(x, Dlloo + g«/gll%(t)lloo
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it is easy to show

(@1, @2, @3) — (af, @5, @3) |l
= [IC(@1, a2, @3) — (af, &5, &3)[l0o
= [C(a1, @2, @3) — C(af, 05, o) + C(af, o5, af) — (af, o5, a5) o
< IC(a1, @2, @3) — Claf, a5, a3)[loo + IClaf, a5, @F) — (af, @5, @) |l

1 1 1 - & - £ - &
=BT\ —+ —+ — ) (lor —ajlloo + a2 — a3 + [[a3 — 3]l00)
C1 2 Cc3

1 1 1
+x/E(C—+—+—).
1

(&) 3

Note that
(@1, &2, @3) — (], @5, &3) lloo = ll@1 — & lloc + 102 — &3 lloo + 3 — &5 llco-
So we can get
(@1, &2, @3) — (af, a5, &3) lloo
1 1 1 y by by & & &
SBIT|—+ —+ — )1, 00, 3) — (o], 2, 03) |0
1
1 1 1
+ e (— +—+ —) ,
1 .

that is,

Vet gt +eh
1-BiT(; '+ + gl

Therefore, (af, o5, af) — (@1, @2, @3) as ¢ — 0. It follows from Lemma 7.1 that

J@@i,a2,03) = sup  J(ap, 0, a3),
(ap,a0,03)eU

which implies that (&1, @2, @3) € U is the optimal policy and has the form of (6.1)-
(6.6). O
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